Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chun-Nian Xia, Wei-Xiao Hu* and Wei Zhou

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.068$
$w R$ factor $=0.213$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Butyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

The $\mathrm{C}=\mathrm{C}$ double bond of the title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$, synthesized by the Knoevenagel-Doebner condensation, is in the E configuration. There are intra- and intermolecular hydrogen bonds in the crystal structure.

Comment

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen et al., 1999). These compounds are known to have anti-artherosclerotic, antibacterial, antiinflammatory, antiproliferative, immunostimulatory, antioxidative, antiviral and neuroprotective properties (Son \& Lewis, 2002). In a continuation of our research on structureactivity relationships, we have obtained the title compound, (I), as a product of the Knoevenagel-Doebner condensation reaction of 3,4-dihydroxybenzaldehyde and monobutyl malonate (Xia \& Hu, 2005).

(I)

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{C}=\mathrm{C}$ double bond is in the E configuration. Selected bond lengths and angles are listed in Table 1. The molecule is almost planar (r.m.s. deviation of all non-H atoms is $0.041 \AA$). There are intra- and intermolecular hydrogen bonds in the crystal structure (Table 1 and Fig. 2).

Experimental

3,4-Dihydroxybenzaldehyde ($1.4 \mathrm{~g}, 10 \mathrm{mmol}$) and monobutyl malonate $(4.0 \mathrm{~g}, 25 \mathrm{mmol})$ were dissolved in a mixture of pyridine $(5 \mathrm{ml})$ and piperidine $(0.2 \mathrm{ml})$. The solution was stirred at room temperature for 24 h and concentrated in vacuo to give a dark-brown mixture. The mixture was dissolved in diethyl ether (30 ml), and washed with a saturated NaHCO_{3} solution, a diluted HCl solution and distilled water. It was then dried with anhydrous MgSO_{4}. The solution was

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids.

Received 14 February 2006
Accepted 15 February 2006
filtered and concentrated to yield a light-yellow crystalline product (yield $1.6 \mathrm{~g}, 67.8 \%$). Recrystallization from a mixture of benzene and diethyl ether (8:2) gave colourless prisms (m.p. 382-384 K). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a benzene solution.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
$M_{r}=236.26$
Triclinic, $P \overline{1}$
$a=5.282(5) \AA$
$b=10.490$ (5) \AA
$c=11.558$ (7) \AA
$\alpha=83.95(6)^{\circ}$
$\beta=84.31$ (7) ${ }^{\circ}$
$\gamma=81.14(6)^{\circ}$
$V=627.0(8) \AA^{3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.964, T_{\text {max }}=0.964$
3050 measured reflections
2259 independent reflections
1301 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.213$
$S=1.02$
2259 reflections
158 parameters
H -atom parameters constrained

$$
Z=2
$$

$D_{x}=1.251 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=9.8-13.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colourless
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.014 \\
& \theta_{\max }=25.2^{\circ} \\
& h=-1 \rightarrow 6 \\
& k=-12 \rightarrow 12 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \quad \text { intensity decay: } 0.3 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1452 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.019(3)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {i }}$	0.83	1.97	2.788 (3)	167
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.83	2.29	2.726 (3)	113
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.83	2.11	2.818 (3)	143
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {i }}$	0.93	2.55	3.255 (3)	133

Symmetry codes: (i) $-x-1,-y,-z+1$; (ii) $-x,-y+1,-z+1$.
H atoms were included at calculated positions and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ values set at 1.2 times (1.5 times for methyl) the equivalent isotropic displacement parameters of their

Figure 2
Packing diagram of (I), viewed along the a axis, with hydrogen bonds shown as dashed lines.
parent atoms. C-H distances were set at $0.97 \AA$ for the methylene H atoms, at $0.96 \AA$ for the methyl H atoms and at $0.93 \AA$ for the remainder, while $\mathrm{O}-\mathrm{H}$ distances were fixed at $0.83 \AA$.

Data collection: CAD-4 Software (Enraf-Nonius, 1993); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are very grateful to the National Natural and Scientific Foundation (grant No. 20272053). We also acknowledge financial support from the Science and Technology Bureau of Zhejiang Province (grant No. 2005 C23022).

References

Chen, W. K., Tsai, C. F., Liao, P. H., Kuo, S. C. \& Lee, Y. J. (1999). Chin. Pharm. J. 51, 271-278.

Enraf-Nonius (1993). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Son, S. \& Lewis, B. A. (2002). J. Agric. Food. Chem. 50, 468-472.
Xia, C. N. \& Hu, W. X. (2005). J. Chem. Res. 5, 332-334.

